Our closest galactic neighbor involved in ‘cannibalism’ again and again, study finds: ScienceAlert

There is increasing evidence that galaxies grow large by merging with other galaxies.

Telescopes like the Hubble have captured dozens of interacting galaxies, including well-known ones like Arp 248.

The Andromeda galaxy is the closest major galaxy to the Milky Way, and a new study shows that our neighbor consumed other galaxies in two different epochs.

“A few years ago we discovered that in the far outskirts of Andromeda there was a sign in the objects orbiting it that the galaxy was not grazing, but that it had eaten large amounts in two different eras,” said Geraint Lewis of the University of Sydney.

Lewis is the lead author of a new paper titled “Chemodynamic Substructure in the M31 Inner Halosphere Clusters: Further Evidence for a Recent Accretion Event.” The Monthly communications from the Royal Astronomical Society will publish the article and it is currently available on the prepress site arxiv.org.

“What this new result does is give a clearer picture of how our local universe has come together — it tells us that at least in one of the large galaxies there has been sporadic feeding from small galaxies,” Lewis said in a press release. release.

Globular clusters are the focus of this research.

They are older associations of lower metallicity stars. There are at least 150 in the Milky Way, probably more. They play a role in galactic evolution, but the role is not clearly understood. Globulars, as they are called, are more common in a galaxy’s halo, while their counterparts, open clusters, are found in the galactic disks.

The researchers behind this work identified a population of globular clusters in Andromeda’s inner halo that all have the same metallicity. Metallicity refers to the elemental composition of stars, with elements heavier than hydrogen and helium called metals in astronomy.

The globular clusters have a lower metallicity than most stars in the same region, meaning they came from somewhere else, not Andromeda itself.

It also means they are older because there were fewer heavy elements in the early universe than there are now.

Lewis called the collection of globulars the Dulai structure, which means black stream in Welsh.

The Dulais structure is likely a group of between 10 and 20 globular clusters misaligned with Andromeda’s rotation. But they’re not the only misaligned group of globular clusters.

The Dulais structure is evidence that Andromeda fed on a group of globular clusters sometime in the past 5 billion years. The other group is a subpopulation of globular clusters that is evidence of a second feeding event between 8 and 10 billion years ago.

According to Lewis and his co-authors, the globular clusters have lower metallicity and are also kinematically different from other star clusters in the same region. The Andromeda galaxy rotates in one direction and the Dulais structure moves differently.

To Lewis and his co-authors, the Dulais structure resembles the leftovers from a messy meal. It is a dark stream with vibrant clusters of stars. It is further evidence that massive galaxies are merging to produce giant displays across the Universe and that larger galaxies are consuming smaller globular clusters in a kind of galactic cannibalism.

“That then leads to the next question: What was actually consumed? Because it doesn’t look like it was just one thing, it seems like it’s been a collection of things that are all slowly being torn apart,” Lewis said.

“We’ve come to realize over the past few decades that galaxies grow by eating up smaller systems — so few galaxies fall in, they get eaten — it’s galactic cannibalism.”

When these feeding events occurred, matter in the universe was more tightly concentrated. Ten billion years ago there may have been more of these events in the universe. That’s one of the reasons why astronomers yearn for increasingly powerful telescopes like the James Webb. They can see the light of old galaxies and look further back in time.

“We know that the Universe had no features when it was born in the Big Bang, and today it’s full of galaxies. Were those galaxies born fully formed or did they grow?” Lewis said.

Astronomers are eager to know the history of our own Milky Way galaxy. We all would. That’s hard to do through observations, because we’re embedded in it.

But Andromeda offers an opportunity to study the evolution of galaxies from an outside perspective, and researchers like Lewis and his colleagues are taking full advantage of it.

Since it is a spiral galaxy similar to the Milky Way, some of what astronomers are learning about the galaxy mergers of Andromeda may also apply to our galaxy.

But astronomers have more work to do before they can draw conclusions about the Milky Way. Or about mergers and consumptions in general. The goal is a more detailed timeline of galactic evolution in the universe.

“What we want to know is, did the Milky Way do the same thing, or is it different? Both have interesting implications for the overall picture of how galaxies form,” Lewis said.

“We want to come up with a more accurate clock on some level to tell us when these events happened, because that’s one thing we need to include in our models of how galaxies evolve.”

As it stands, Lewis and the other researchers only have a two-dimensional historical view of the Dulais structure.

The dimensions are speed and chemistry. Finding the distances of all these objects will yield a third dimension, which will fill the history of the globular clusters and how Andromeda consumed them.

Lewis isn’t quite sure at this point that we can call them spherical, and he won’t be until there is more data. Hence the name “Dulais structure”.

“That then allows us to work out trajectories, where things are going, and then we can run the clock back and see if we can get this cohesive picture of when things fell in,” he said.

“We couldn’t call it an object like a galaxy, because we don’t really know if the signature we’re seeing is from one big object disrupting or seven smaller objects disrupting. So we call it a structure than it. be a particular galaxy.”

There is clearly something going on with the Dulais structure and the Andromeda galaxy. But true to his scientific training, Lewis is cautious about firm conclusions at this stage.

“It’s opened a new door in terms of our understanding,” Lewis said in a press release. “But exactly what it tells us, I think we still have to work that out.”

The authors state their case clearly in their paper. Intriguingly, the orbital axis of this Dulais structure is closely aligned with that of the younger accretion event recently identified using a subpopulation of globular clusters in Andromeda’s outer halo, and this strongly suggests a causal relationship. between the two,” the authors summarize in their paper.

“If this connection is confirmed, a natural explanation for the kinematics of the globular clusters in the Dulais structure is that they follow the accretion of a substantial precursor (about 1011 solar masses) in the Andromeda halo over the last few billion years, which may have occurred as part of a larger group incursion.”

This article was originally published by Universe Today. Read the original article.

Leave a Reply

Your email address will not be published. Required fields are marked *